了解任务学习后神经电路中的活动如何重新成像,可以揭示学习的基本机制。由于神经成像技术的最近进步,高质量的记录可以在多天甚至几周内从数百个神经元获得。然而,人口响应的复杂性和维度对分析构成了重大挑战。研究神经元适应和学习的现有方法通常对数据或模型产生强烈的假设,导致不概括的偏置描述。在这项工作中,我们使用一个叫做 - Cycleangan的深度生成模型的变种,了解预先和后学后神经活动之间的未知映射,记录了$ \ texit {vivo} $。我们开发一个端到端的管道到预处理,火车和评估荧光信号,以及解释所得到的深度学习模型的过程。为了评估我们方法的有效性,我们首先在具有已知地面实话转换的合成数据集中测试我们的框架。随后,我们将我们的方法应用于从初级视觉皮层记录的表现小鼠记录的神经活动,其中小鼠从新手转换到基于视觉的虚拟现实实验中的专家级性能。我们评估了产生的钙信号的模型性能及其推断的尖峰列车。为了最大限度地提高性能,我们推导了一种新的预选神经元方法,使得基于卷积的网络可以利用神经活动中存在的空间信息。此外,我们还纳入了视觉解释方法,以提高我们工作的可解释性,并进入学习过程中的洞察力,表现在细胞活动中。我们的结果表明,分析具有数据驱动的深度无监督方法的神经元学习过程,其可能以不偏不倚的方式解开变化的可能性。
translated by 谷歌翻译
输入管道,其摄取和转换输入数据,是培训机器学习(ML)模型的重要组成部分。然而,实现有效的输入管道有挑战性,因为它需要推理有关并行性,异步的推理和细粒度分析信息的可变性。我们对谷歌数据中心超过200万毫升工作的分析表明,大量模型培训工作可以从更快的输入数据管道中受益。与此同时,我们的分析表明,大多数工作都不饱和主机硬件,指向基于软件的瓶颈的方向。这些发现的动机,我们提出了水管工,一种用于在ML输入管道中找到瓶颈的工具。管道工使用可扩展和可解释的操作分析分析模型来自动调整Host资源约束下的并行性,预取和缓存。在五个代表性ML管道上,水管工可获得最多46倍的误配置管道的加速。通过自动化缓存,与最先进的调谐器相比,水管工获得超过40%的端到端加速。
translated by 谷歌翻译